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Several problems in the theory of oscillations necessitate investigation of nonlinear second- 
order differential Eqs. of the form 

cp” t F (~9 cp’ + I W = T (11 

where F@l and f(9) are certain periodic functions. The phase space of the system 

dq -- 
dt - yt $=T-f(v)--((cp)y (21 

corresponding to Eq. (11 is a cylinder. In investigating the qualitative structure of the de- 
composition of the phase cylinder’into trajectories it is often important to isolate in the 
space of system parameters the existence domain of the limiting cycle which includes the 
phase cylinder. Usually this is effected by investigating the equilibrium states of system 
(2) and studying the behavior of the saddle separatrices. As a rule this is au intricate and 
time-consuming operation. 

We propose to show how in certain cases one can make use of almost self-evident con- 
siderations involving a properly chosen “comparison system” generated by Eq. 

cp” + @ ((~1 ‘P’~ + f @) = T (31 
to obtain a sufficient criterion for the existence of a limiting cycle encompassing the phase 
cylinder and to estimate the existence domain in the parameter space without investigating 
the behavior of the saddle separatricee. 

Eq. (3) is associated with the system 

dq -= 
dr Yt ~=T--i(~)--~~rp)~~ 

Let us consider the phase half-cylinder y > 0 of systems (2) and (4). It does not contain 
eqnilibrinm states, since these all lie along the y-axis. 

If infinity is unstable for system (2), if in some domain G (0 < y t < y < -1 of the cylin- 
drical phase space the vector field corresponding to system (21 is rotated at each point b 
a positive angle relative to the vector field corresponding to system (41, and if system (4 7 
has a stable limiting cycle in the domain C, then system (21 also has a stable limiting 
cycle in C. This statement is almost self-evident. The trajectory 
which for t = t and 7 = ho intersects at a positive angle the tra’ectory 
tern (41 coiIed%om above onto the limiting cycle in the domain d 
iting cycle for I = tt> ro and T = 7i > 7o, since this would contradict the sign of rotation 
of the vector field and thus could not proceed to the equilibrium state. Since the trajectory 
cannot go to infinity (infinity being unstable), it must coil onto the limiting cycle lying 
above the limiting cycle of system (41. 

The effective use of system (4) as a comparison system rests on the possibility of its 
direct integatiom and the consequent possibility of finding the equation of the limiting cy- 
cle of the comparison system if such a cycle exists. 

EXampIe 1. Let us consider syatem[l to 31 

758 



The existence domain of a limiting cycle of a class of dynamic systems 759 

dq -- 
dt -yt ~=T--l~p-rrin29,-h(ff-bLcos2~)y, Ibl<l (5) 

and the comparison system 

-4’ -- 
dt --yyI ~=~--~inrp--rrin2~--h~a 

Here T, r, h are positive parameters. System (6) has the following family of integral 
curves on the cylindrical phase space: 

T 2 
@=k - Vw sin@+80)-- 

f& 
sin (Za, + et) + cc”lbo (7) 

The value c = 0 in (7) is associated with a stable limiting cycle of system (6) if the val- 
ues of the system parameters rue such that the right-hand side of (7) for c = 0 ramsins pos- 
itive for all cp. The hajectoriee of systems (5) and (6) are tangent along the “contact 
curve” 1 - b COB 2:~ = y, whose largest ordinate is 1 + 1 b 1. The vector field of system (5) 
is rotated in the positive direction relative to the vector field of system (6) for all y > 1+ 
+ 16 1. The following estimate is clearly valid for the minimum ordinate of the lfmiting cy- 
cle of system (6): 

The inequality 
T __ 
h q-&i - f& G=(~+lbP 

isolates in the parameter space T > 0, r > 0, I > 0, 1 b 1 < 1 a domain for whose points nys- 
tem (51 is Imown in ‘advance to have a limiting cycle (since li > 0 and 1 b( < lt infinity is 
unstable for system (511. 

Exompl a 2. Let us consider a system describing the auto-oscillations of a synchro- 
nous motor, 

da, -- 
dt --p 

~=T-ssin*--(A+Bsinacp-_Si~rp)y 

Here 2’ and R sre positive parameters. Eq. (9) is investigated in [4 to 61 by the small 
parameter method. Making use of the comparison system 

&’ -- 
dt --- $- = T - sin q - hyr 

with a still uudetermined positive parameter A, we can, without introducing a small parame- 
ter into (91, isolate in the parameter space 7” > 0, A > 0, B and y some domain for whose 
points system (9) has a stable limiting cycle. Let us limit ourselves to the case 7’ < 1, which 
is of tbe greatest interest. System (10) has the following family of integral curves on the cyl- 
indrical phase space: 

ya = ce-2AQ + q+ 2 ?a? -I- 1 
sin tcp + cpo) (11) 

The value c = 0 in (11) is associated with a stable limiting cycle if 

The contact curve for systems (9) and (10) is 

y=k’(A+Bsin*cp--sincp) (12) 

We note that the condition of infinity instability for system (9) (the coefficient of y as- 
sumes positive values only) coincides with the condition y > 0 for contact curve (12). We 
require that the contact curve be situated on the phase cylinder in the domain y > 0 and “be- 
low” the limiting cycle of comparison system (10). For the values of the parameters ?‘, A, 
B, and y for which this requirement is fulfilled, i.e. in the domain “above” the limiting cy- 
cle of system (lo), the vector field of system (9) is rotated positively relative to the vector 
field of system (lo), infinity is unstable for @I, and system (9) has at least one stable lim- 
iting cycle in the domain under consideration. 

In order for 
& y) > 0 ad F’(A, 

stem (9) to have a limiting cycle it is sufficient that the inequalities f(A 
B, y) <y&, = k’, be fulfilled, where f(A, B, y) and F(A, B, y) 8ce ;he 
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minimum end maximum of contact curve (121, respectively_. These inequalities lead to the 
two foflowing groups of inequalities, respectively: 

A+B--_y>O for y - 2B > 0, y >, 0 

A+B+y>O for y + 2B Q 0, y q 0 
(13) 

A --‘/,yelB>O for y-ZB<O,y +2B>,O 

(A + B - ilIe < co2 for y - 2B B 8, y 6 0 (co = &ttnf 

(A + B + 1’1% < co2 for y + 2B > 0, y >, 0 (14) 

(A - ‘I, ya I B)Z < COB for y -ZB>O,y +zr;t<o 

The domain isolated by inequalities (13) and (14) in the e 

B B and y depends esaentia ly on the parameter h of com- P 
ace of the parameters T, A, 

parison system (10). The permissible values of h lie in 
the range 0 < x < T/2 \/l - T?r corresponding to the con- 
dition Fo > 0. In order for the domain of values of the 

2 parameters A, 6, y to be maximum for some fixed T < 1, 
it is necessary to choose a A for which the curve 

coa (h) = Th - v& 

ha8 a maximum. This yields the condition 

T (4h” + i) Ia - 411 (2ha + 1) = 0 

which enabIes US to determine x un~bi~ously from the 
given T < 1. 

Fig. I 

In Fig. 1 we have isolated in the plane of the parame- 
ters R and y for fixed A = 0.18, 2’ = 2/3 a domain for 
whorxe points system (9) haa a stable limiting cycle en- 
compassing the phase cylinder. The value T gi 2/3 cor- 
responds to h = 0.19 for which ~0 2 01) haa its maximum 
value. 

The authomt ilce grateful to N.N. Bautin for his valuable comments. 
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